Buoyant Instability of a Viscous Film over a Passive Fluid
نویسنده
چکیده
In certain geophysical contexts such as lava lakes and mantle convection, a cold, viscous boundary layer forms over a deep pool. The following model problem investigates the buoyant instability of the layer. Beneath a shear-free horizontal boundary, a thin layer (thickness d1) of very viscous fluid overlies a deep layer of less dense, much less viscous fluid; inertia and surface tension are negligible. After the initial unstable equilibrium is perturbed, a long-wave analysis describes the growth of the disturbance, including the nonlinear effects of large amplitude. The results show that nonlinear effects greatly enhance growth, so that initial local maxima in the thickness of the viscous film grow to infinite thickness in finite time, with a timescale 8μ/∆ρ gd1. In the final catastrophic growth the peak thickness is inversely proportional to the remaining time. (A parallel analysis for fluids with power-law rheology shows similar catastrophic growth.) While the small-slope approximation must fail before this singular time, the failure is only local, and a similarity solution describes how the peaks become downwelling plumes as the viscous film drains away. BUOYANT INSTABILITY OF A VISCOUS FILM OVER A PASSIVE FLUID
منابع مشابه
Nonlinear Instability of Coupled CNTs Conveying Viscous Fluid
In the present study, nonlinear vibration of coupled carbon nanotubes (CNTs) in presence of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory. CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal magnetic field. Using von Kármán geometric nonlinearity and Hamilton’s principle, the nonlinear higher order governing equations are deriv...
متن کاملInstabilities of Thin Viscous Liquid Film Flowing down a Uniformly Heated Inclined Plane
Instabilities of a thin viscous film flowing down a uniformly heated plane are investigated in this study. The heating generates a surface tension gradient that induces thermocapillary stresses on the free surface. Thus, the film is not only influenced by gravity and mean surface tension but also the thermocapillary force is acting on the free surface. Moreover, the heat transfer at the free su...
متن کاملNonlinear Vibration and Instability Analysis of a PVDF Cylindrical Shell Reinforced with BNNTs Conveying Viscose Fluid Using HDQ Method
Using harmonic differential quadrature (HDQ) method, nonlinear vibrations and instability of a smart composite cylindrical shell made from piezoelectric polymer of polyvinylidene fluoride (PVDF) reinforced with boron nitride nanotubes (BNNTs) are investigated while clamped at both ends and subjected to combined electro-thermo-mechanical loads and conveying a viscous-fluid. The mathematical mode...
متن کاملViscous Fluid Flow-Induced Nonlocal Nonlinear Vibration of Embedded DWBNNTs
In this article, electro-thermo nonlocal nonlinear vibration and instability of viscous-fluid-conveying double–walled boron nitride nanotubes (DWBNNTs) embedded on Pasternak foundation are investigated. The DWBNNT is simulated as a Timoshenko beam (TB) which includes rotary inertia and transverse shear deformation in the formulation. Considering electro-mechanical coupling, the nonlinear govern...
متن کاملInfluence of slip on the Rayleigh-Plateau rim instability in dewetting viscous films.
A dewetting viscous film develops a characteristic fluid rim at its receding edge due to mass conservation. In the course of the dewetting process, the rim becomes unstable via an instability of Rayleigh-Plateau type. An important difference exists between this classic instability of a liquid column and the rim instability in a thin film as the growth of the rim is continuously fueled by the re...
متن کامل